AP Calculus
Continuity (2.4) Worksheet
For each of the following, where $\lim _{x \rightarrow a} f(x)$
a) Evaluate $f(a)$ if it is defined
b) Evaluate the limit (numerically, graphically \& algebraically, if possible) if it exists. Consider the one-sided limits.
c) Sketch the graph near $\mathrm{x}=a$
d) Is $f(x)$ continuous at $\mathrm{x}=a$?

A function f is continuous at $\mathrm{x}=a$ if all three of the following are true:

1. $\lim _{x \rightarrow a} f(x)=L$ (the limit exists)
2. $f(a)=M$ (the function is defined)
3. $L=M$

1. $\lim _{x \rightarrow 3}(2 x-1)$	2. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
3. $\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-11 x+10}{x-2}$	$\text { 4. } \lim \underline{\|x\|}$
5. $\lim _{x \rightarrow 1} F(x)$, where $F(x)= \begin{cases}2 x+3, & x<1 \\ 4, & x=1 \\ x^{2}+1, & x>1\end{cases}$	6. $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}$
7. $\lim _{x \rightarrow 1} g(x)$, where $g(x)= \begin{cases}\cos x, & x \leq 1 \\ x^{2}+1, & x>1\end{cases}$	8. $\lim _{x \rightarrow-1}([x]+2)$
9. $\lim _{x \rightarrow 4} \frac{1}{x-4}$	$\text { 10. } \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$

