Warm Up

List the equations for all vertical and
horizontal asymptotes

FIGURE 5

Vertical Asymptotes: (Recall 2.2)

The line $x=a$ is called a vertical asymptote of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ if at least one of the following six statements is true.

$$
\begin{array}{lll}
\lim _{x \rightarrow a} f(x)=\infty & \lim _{x \rightarrow a^{-}} f(x)=\infty & \lim _{x \rightarrow a^{+}} f(x)=\infty \\
\lim _{x \rightarrow a} f(x)=-\infty & \lim _{x \rightarrow a^{-}} f(x)=-\infty & \lim _{x \rightarrow a^{+}} f(x)=-\infty
\end{array}
$$

Horizontal Limits (Limits at Infinity)

The line $\mathrm{y}=\mathrm{L}$ is called a horizontal asymptote of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

- A calculus type of question would be

$$
\lim _{x \rightarrow 1} \frac{3 x-3}{x^{2}-1}
$$

- Always try direct substitution. For this it would not work though.
- So now consider what is happening to the graph at $x=1$. There some type of discontinuity (Hole, Jump, Asymptote). We rule out hole, so let's see if there is an asymptote.
- Consider $y=\frac{3 x-3}{x^{2}-1}$
- Write an equation for the vertical asymptote(s) of the graph.
- After simplifying the function we see that $\mathrm{x}=1$ is a vertical asymptote.
- So then it's a matter of determining if the limit is $\infty,-\infty$, or does not exist. I went over how to do this without a calculator in class. We will go over again.

Horizontal Asymptotes

$$
\lim _{x \rightarrow \infty} f(x)=L \text { or } \lim _{x \rightarrow-\infty} f(x)=L
$$

3 Definition The line $y=L$ is called a horizontal asymptote of the curve $y=f(x)$ if either

$$
\lim _{x \rightarrow \infty} f(x)=L \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=L
$$

What you will need to get out of this:

- With Horizontal Asymptotes (as we look at x approaching infinity or negative infinity)
- If it's NOT a rational function
- Use intuition
- Use knowing the function and it's graph
- If it IS a rational function
- Use what you know about finding horizontal asymptotes from Algebra 2/MA
- Find the highest degree x and divide everything by it.

Sometimes it's intuitive.

Example: Evaluate $\lim _{x \rightarrow \infty}\left(x+\sqrt{x^{2}+2 x}\right)$

Sometimes we can just think about what happens to the value of x as we get bigger and bigger.

$\lim _{x \rightarrow \infty} x^{3}$
 $x \rightarrow \infty$

$\lim _{x \rightarrow-\infty} x^{3}$
 $$
x \rightarrow-\infty
$$

Sometimes it's knowing the function

$\lim _{x \rightarrow-\infty} \tan x$

Tangent is a periodic function so as we go further into the negatives, we do not have a limit. It does not exist.

$$
\lim _{x \rightarrow \infty} x^{2}\left(x^{2}-1\right)^{2}(x+2)
$$

This is a $7^{\text {th }}$ degree polynomial with a leading coefficient that is positive. So, study up on what graphs looks like (end behavior wise) of polynomials:

Sometimes we need to utilize algebra, simplification techniques and this idea to the right.

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}
$$

If $r>0$ is a rational number then what could this limit be?

Example: Evaluate $\lim _{x \rightarrow \infty} \frac{4 x^{3}+3 x+1}{7 x^{3}+2 x^{2}+x}$

We do these by dividing
EVERYTHING in the fraction by the highest degree x .
For example in the second one

$$
\lim _{x \rightarrow \infty} \frac{1-x^{2}}{x^{3}-x+1}
$$ we will divide everything by $\mathrm{x}^{\wedge} 3$.

See Example 3 on page 133

$$
\lim _{x \rightarrow \infty} \frac{t-t \sqrt{t}}{2 t^{3 / 2}+3 t-5}
$$

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+x}{3-x}
$$

NEXT CLASS

- Give them time to practice 2.6
- Review the concepts
- AP style quiz
- 2.7
- Then review
- Then test
- HW tonight

